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Foreword

The year-end progress on Contract No. F49620-82-C-0022 for the Air Force

Office of Scientific Research is reported in this document. The work for

Task 1 is described in "Pseudospectral Calculations of Two-Dimensional

Transonic Flow," Technical Note No. 215, which is provided first. A

description of the Task 2 work, "A Numerical Investigation of VTOL

Aerodynamics," Technical Note No. 216,

is included next.
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1. Introduction
’ In recent years, there has been strong interest in applying pseudospectral

methods to various flow problems. Some examples of these applications are
collected in a recently published book by Voight, Gottlieb, and Hussaini
(1984). One of the current areas of interest is the calculation of compres-
sible flows with shock waves. Gottlieb, Lustman, and Orszag (1981) have
investigated the one-dimensional shock tube problem using a pseudospectral
method and reported the ability of capturing the shock within one grid point.
Gottlieb, Lustman, and Streect (1982) have reported work on two problems in
this area. The first is the solution of Euler equations for oblique shock
reflection from a flat plate. By using a sparse 8x8 computational grid, they
have shown that it is possible to capture the shock wave within one grid point
and that the treatment of boundary conditions is extremely crucial to the con-
) struction of a stable scheme. The second problem is the solution of a full
potential equation for transonic flow past an airfoil. An airfoil is mapped
to a circle. In the circumferential direction, a Fourier series is used, while

Chebyshev expansion is used in the radial direction. 1In‘-order to stabilize

the calculation, an artificial viscosity is used in the governing equation.
Gottlieb et al. (1982) has shown that in a subsonic flow, a highly accurate
solution can be obtained by using a sparse grid of 32x8 grid points. In the
transonic case with shocks, the shock wave spans across three grid points and,
hence, is not accurate enough if a sparse grid is used. The problem chosen by
Gottlieb et al. (1982) for the solution of the Euler equations is, unfor-

tunately, not a good one. The region between the oblique shock is a constant

state. Aside from capturing the shock wave, their research yields no informa-
tion about the accuracy of the method in the region of smooth variation away
from the shock wave. Their work on potential flows has shown that the -~
incorporation of conventional artificial viscosity into the spectral method
will cause deterioration of the accuracy and thus defeat the purpose of using

a spectral method.

In the present work, we have chosen the realistic problem of transonic
flow over an airfoil to study the application of a spectral method to compres- :ﬁi::;}
sible flows with shock waves. Part of the findings of the present work have '?i?}‘ﬂ
been reported in a conference paper (Jou, Jameson, and Metcalfe, 1983), which

is included in this report as an appendix.
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2. Basic Approach

2.1 Governing Equations -

The basic approach is to map the exterior of an airfoil to the interior of
a circle. Polar coordinates in the mapped plane will be used. Spectral

decomposition of the solution can be used in the mapped plane. To serve this

b purpose, the Euler equations in the mapped plane are written in fully
conservative form by using both physical and contravariant velocities. These

equations are

) pHU PHV *

-
L meGd -0 (1 :
) where : @
U 2 pv 2 o
> P +> pul + yYP/YMm > puv - ny/YMm Ll
q=J]|pu ; F = 21 G = 2 5 AR
o

Ul Y, X u . - _ .
[v] [_y; x;{(] [v] ; H=[(y~- VP +E]/p;

(x,y) are Cartesian coordinates in the physical plane, (X,Y) are polar coor-
dinates in the mapped plane, p is the density, (u,v) are velocity components,
(U,V) are unscaled contravariant velocity components, E is the energy, H is

the specific enthalpy, P is the pressure, J is the Jacobian of the transforma-

tion, M_ is the free-stream Mach number, and y is the specific heat ratio. P,
p, and the velocity vector (u,v) are nondimensionalized by their values at the
free-stream condition, E and H are nondimensionalized by the free-stream inter-
nal energy meva’ and other variables at th2 free-stream condition are com-—
puted from these variables. [
The physical boundary conditions are defined by the solid-wall condition '
on the airfoil surface and the fact that the disturbances generated by the
airfoil propagate outward to infinity. The numerical implementation of these

physical boundary conditions will be discussed later.

2.2 Numerical Scheme

A computational mesh is created by equally dividing the (X,Y) coordinates

in the mapped plane. In the mapped plane, the spatial derivatives in X at

) TN-215/09-84 -




each mesh point are evaluated by application of a fast Fourier transform. The ’ -:f,?
derivatives in Y are evaluated by second-order central finite differences. ' ]
Evaluation of the elements in the transformation matrices (xx,xy,yx,yy) is
performed in the same manner. The singularity of the transformation at the

trailing edge is avoided by placing it between two mesh points.

’ By using this method of evaluating spatial derivatives, the governing
equations are converted to a system of ordinary differential equations in time. j
These equations can be solved numerically by using any of a variety of well- lﬁ
developed techniques for the solution of ordinary differential equations. 1
) An approximate fourth-order Runge-Kutta scheme is used in this work. The -4
algorithm is given by the following equations: ®*
PALD AR rs—fn—)-i(“'l) sn= 1, eee, b (2)
) where E represents the flow variables at the mesh points, R represents the : P j
terms with spatial derivatives in the equations, and n denotes the Runge-Kutta 7 -
step. For a linear wave equation, this scheme has been shown to be stable for " f;
a CFL number less than 2.8 (Jameson, Schmidt, and Turkel, 1981) for a finite ;5=f;i3
) difference scheme, and is stable for our hybrid scheme with a CFL number less ;ﬁ;gi;

than or equal to 2. Following Jameson et al., a local time step that is re- v
stricted by the CFL number is used. Because of this, no physical interpreta-

tion should be given to the transient solutions.

2.3 Filtering
Filtering is required in suppressing the Gibbs error. A Schumann filter E;Ea;;ﬁ

used by Gottlieb et al. (1982) and given by the following formula has been '

applied every 35 time steps at a CFL number of 3.5 (see Section 2.5, Convergence ....

Acceleration).

9 = 0.25(qK+1 + 2q, + qx_l); K=1i,j (3

where i and j denote indices of the discrete points in the X and Y directions, R
respectively. At the shock wave, one-sided filtering in the X direction is i;.
applied to preserve the sharpness of the shock wave. The Schumann filter is
equivalent to a first-order artificial viscosity. However, the filter is

applied only every 35 time steps. The order of the error is higher than first

order. No high-mode smoothing (Gottlieb et al., 1982) has been applied.

TN-215/09-84
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quantities Q as computed by the interior formula, with the subscript c
denoting the quantities computed by the interior formula. The following
formulae for the physical quantities at the boundary points can then be gilven.
AP = AE + y(y-1)M IETVIES LW
Yy ' [ 2 pz
P =P + AP
c 0
B) =M /0 + (aM - BooM /0 )/
Y A oo o oo
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We have experimented with other filtering methods, such as derivative
smoothing and artificial viscosity. The former is a low-pass filter in the
wave number space when evaluating derivatives spectrally. It 1s expected to
yield a smoother residue and thus stabilize the calculations. Numerilcal
experiments do not favor this approach, as the filter fails to stabilize the
computations., As to the artificial viscosity, the shock wave is smeared in
the computations, which defeats the nondissipative nature of the spectral

scheme.

2.4 Boundary Conditions
The numerical implementation of boundary conditions for a hyperbolic

system of partial differential equations is an active research subject in
itself. Essentially, on a boundary Yo, there are four characteristics that
correspond to the speeds 9 94» 9~ © and q, +c. The respective charac-
teristic variables are p - cop, 95 P~ pocoqn, and p + pocoqn, where the
subscript o stands for the quantities at the previous time step. Only the
characteristic variables carried on the outgoing characteristics from the
interior of the fluid domain can be computed from the governing equations.

The characteristic variables carried on the incoming characteristics must be

replaced by the appropriate boundary conditions. The flow quantities can then
be recovered from the combination of the boundary conditions and the outgoing

characteristic variables.
On the solid surface Y = 0, there is only one incoming characteristic.
Let (M,N) be the momentum along the surface and normal to the surface,

respectively, and AQ be the symbol for the temporal change of physical

(4)

(5)

(6)

LR,

......
. e .




C -5-
= + 7
o, =P, *+Aho (7N
® (n) _ _ .2 .
P P, - YM, (ANec (8)
o(® oL (™) p el 9
c 2 ¢’ "o
My
o
™ - p(“)-(M/o)c (10)
N =0 (1 g
(n) (n), 1 2 [ )%/ (n) -
e E =P 4 3 v(y-1) M_ M o) (12) » |
t where the superscript n stands for the newly advanced quantities, and all AR
velocities are nondimensionalized by the free-stream velocity.
C At the far field boundary, the treatment is essentially the same as that -. 4
used by Jameson et al. (1981) except that the "extrapolated" quantities as : ;
defined in that paper are those computed by the interior computations. B
y j
i‘ 2.5 Convergence Acceleration i.....]
L To increase the stability of the time~stepping scheme, an additional “‘
{ "residue-smoothing" process (Jameson and Baker, 1983) has been implemented. .:\'.-:_:..:1
b cl
After the residue R has been evaluated at every mesh point, the residues are o
'-“ ;\-'
® smoothed by a linear transformation defined as follows: 5-—-4
1
R=(1-eH T (1-eH MR (13) U
X Y
: where Gx and GY are conventional finite difference operators in X and Y, and €
C is the parameter for the residue-averaging process. The new modified residue .
field R is used to advance the solution in time. This process alters the time- .
dependent solution without changing its steady state. To bring out the essen- 1
} R
p tials of the residue-averaging process, a simple wave equation is considered:
p ...'_“‘1
+ = . 4) -
J 6, +co =0 (1 > |
)
. The residue-averaging process as described is equivalent, to the lowest ]
{ order, to adding an additional term to the original simple wave equation and it
C converting it to the following equation: .'
- 4
6, + b, e(Ax) by =0 - (15) S
( TN-215/09-84 »




Y

The dispersion relation for this equation can be given as

e (16) ®.
1 + €k“(Ax)

where w is the frequency and k is the wave number. By increasing the para-
meter €, the wave speed for the high wave number component is substantially
increased. This decrease in wave speed for the dangerous short waves contri- o
butes to the substantial increase in the time step. In fact, Equation (15) is

the linearized form of a model equation for long dispersive waves discussed by

Benjamin, Bona, and Mahony (1972), who pointed out the numerical advantage of

this equation over the Korteweg-de-Vries equation. Other means of manipulating e
the dispersion relation to gain stability have been suggested (e.g., Gottlieb '
and Turkel, 1980). However, these methods do not recover the original equation

in steady state, although the error is of higher order. The residue-averaging

process substantially extends the stability boundary. A CFL number of 3.5 has ]

been used without any difficulty.

TN-215/09-84
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3. Computed Results for Hybrid Scheme

The initial effort employed a hybrid spectral/finite difference discretiza-
tion to gain some experience with the problem. 1In the circumferential direc-
tion, the variables are expanded in a Fourier series because of the periodic
nature of the problem. In the radial direction, a central finite difference
scheme is used. This hybrid scheme is designed to answer some questions in
applying the pseudospectral method to transonic flows. The application of the
pseudospectral method to a realistic airfoil shape can be demonstrated by this
scheme. Since we expect that the shock wave will be normal to the airfoil
surface, the discontinuity is mainly in the X direction. Adequate resolution
of the shock wave can be achieved and the question of convergence of the
spectral series can be answered using the hybrid scheme. Other properties,
such as the time-stepping scheme, convergence acceleration, and the filtering
technique, can also be studied with the hybrid scheme. We shall use a Karman-
Trefftz airfoil for this work because of its simple analytical mapping from
the physical plane to the interior of the circle. The method can easily be
extended to an airfoll of arbitrary shape by using a truncated complex series
to map the profile to a circle.

For testing the solution algorithm, flows around a circular cylinder are
computed. The pressure distribution for a subcritical flow with M_ = 0.39
is given in Figure 1. The computation is performed on a 64x24 grid (64 points
in the circumferential direction, 24 points radially). It has been computed
without filtering. A supercritical case with M_ = 0.45 is also computed,
and the results are shown in Figure 2. Filtering is performed every 35 time
steps with a CFL number of 3.5. The results agree with a finite volume cal-
culation by Jameson et al. (1981). The shock wave has no internal structure
and is sharply defined.

A Karman-Trefftz airfoil with the following transformation from the mapped
plane [ to the physical plane z 1s chosen for calculations.

K K
z_L - (1+LC)K + (l-Lg).c s k= 1.9 (17)
(1+12)" + (1-L7) SN
- 2,1/2 _ . . . re :f'_:_.._j:_
L=(1-n)""%-¢ ;& =(&,n)=(-0.1,0) (18) e
—-!\ :4
i
I
- :°:1
S
. : RIS b
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1 Supercritical non-1lifting flows with M_ = 0.75 are computed on a

@ 64x24 grid. The results are shown in Figure 3, together with the results from
a finite volume calculation. The hybrid calculation shows agaln a sharply
defined shock wave. The agreement between the two calculations is very good.
In particular, the positions of the shock as defined by the midpoint of the

o structure show close agreement., There are discrepancies immediately behind
the shock wave, however, and the source of these discrepancies 1s not clear.
The pressure ratio across the shock wave using the pseudospectral calculation
has been checked against that using the Rankine-Hugoniot relation based on the

.0 upstream Mach number. The error is less than 4 percent.

To demonstrate the convergence of the Fourier series, the same case is

computed on a 32x24 grid. The results are shown in Figure 4, together with
the results of calculations on a denser mesh using a finite volume calcula-
C tion. The accuracy of the 32x24 calculation is quite good. The shock
resolution of the sparse mesh calculation is comparable to that of the 64x24
finite volume calculation. As expected, the finite volume calculation on the

sparse grid does not produce acceptable results.

TN-215/09-84 L.
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L 4. Full Spectral Scheme

To carry the work further, we have attempted to conmstruct a full spectral
method. Instead of using a finite difference method for the radial direction
in the transformed circular plane, we have used a Chebyshev polynomial

expansion for that direction.
b We immediately encountered difficulties, however, in using the Chebyshev
spectral method. The first difficulty is the-stability problem. Chebyshev
collocation points are defined as

=117 _ (J-1) Sl
b y 2 [1 cos T T] (19) . Py B
where N+1 > J > 1 is the computational coordinate and 1 > y > 0 is the physical L
space. It is easy to verify that the spacing of the grid points at the end L
points is asymptotically ;“c‘ﬁj
1 e
Ay . 0 {— . (20) S
N2

For viscous problems, the end points are usually on the solid surface, where
the flow velocity vanishes. The time steps can maintain a reasonable size

even though the grid spacing 1s small, since

At ~ CFL <91> . (21)
u
In the present case,
At - cFrL (-8 (22)
lul+e
vwhere ¢ is the speed of sound. The small grid size near the end points forces
Y S (23) o
N2 T

The solution will take an excessively large number of time steps to develop.
Also, because of large variations in the grid spacing, the local time step
approach used successfully in the hybrid method does not seem to apply.

An attempt to stretch the Chebyshev grid to achieve a more uniform grid
spacing also failed. The accuracy near the end points deteriorates, which

affects the accurate application of boundary conditions. This deterioration ::fj:;

of accuracy in a stretched grid can be understood by taking the extreme ) .~

example of restoration to a uniform grid. Let :};L“;

1 .-_::.jf.._.':

ne=3z (1 - cos my) (24) RO

.
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where the computational space N is divided into Chebyshev collocation points

and the corresponding y coordinate is uniform. By the chain rule, we have

a=d—n.i— 3
3 dy (25)
dn _ 1 .

iy -7 sin Ty (26)

Since dn/dy approaches zero at the end points, accurate evaluation of the
derivative at the end points is not possible.

We currently plan to investigate two other methods. The first is to
discard the Chebyshev method and attempt the Fourier polynomial subtraction
method (Gottlieb and Orszag, 1977). The second is to develop an implicit

method to circumvent the stability problem.
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5. Conclusions
P The hybrid method shows promise for the use of spectral methods to accur-
ately resolve the shock wave in a realistic problem. However, the filtering
of the solution certainly deteriorates the accuracy. Furthermore, for complex
three-dimensional problems, it is difficult to identify a supersonic-supersonic
shock. Present means of identifying shock waves by the sonic condition do not
o ying
apply there. Unlike the finite difference method, the residue of a spectral
method does not decrease with the number of time steps. At present, the
number of supersonic points is used as the indicator of convergence.
® The full spectral method using a Chebyshev expansion also presents diffi- - 4
. . o
culties. Further investigations of alternative methods are required to assess
the merit of a full spectral scheme.
<
o
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Figure 2. Pressure Distribution for a Supercritical Flow Over a Cylinder

at Mach 0.45




L’ S AT~ e N T T T T m— AR At SatC s s SRS Tt

-15-

__.-—-—'"'-"

Figure3. Pressure Distribution on a Karman-Trefftz Airfoil at
Mach 0.75 Using a 64 x 24 Grid (350 Steps)
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i PSEUDOSPECTRAL CALCULATIONS OF TWO-DIMENSIONAL
| TRANSONIC FLOW
Wen-Huei Jou
® Flow Research Company, Kent, Washington, U.S.A.
Antony Jameson
Princeton University, Princeton, New Jersey, U.S.A.
Ralph Metcalfe
Flow Research Company, Kent, Washington, U.S.A.

SUMMARY

A hybrid pseudospectral-finite difference scheme is used to

calculate transonic flow over a two-dimensional object using the

Euler equations. The exterior of the object is mapped to the
¢ interior of a circle. The flow field variables are discre-
tized using a Fourier series in the circumferential direction,
while a central finite difference scheme is used in the radial
direction. We used a four-stage Runge-Kutta scheme including a
filter and a residue-smoothing process. Transonic flows over a
circular cylinder as well as a Karman-Trefftz airfoil were
computed. The results are compared to those from finite volume
calculations. It is found that the pseudospectral calculations
are able to produce shocks with no internal structure, and fewer
grid points are needed to obtain the required accuracy.

INTRODUCTION

In recent years, there has been strong interest in computa-
tions of transonic flows using the time-dependent Euler
equations. This interest stems in part from the possibility of
shock-generated vorticity in the flow field and in part from the
interest in numerical methods for a nonlinear hyperbolic
system. Most of the numerical methods are finite difference in
nature and are second order in accuracy. To stabilize the
computation and to smooth the dispersive error for unsteady
computations, either artificial dissipative terms are added to
the equations or a built-in dissipative mechanism is included in
the numerical scheme. These dissipative terms usually cause the
shock wave to span across three to four grid points. To capture
a shock with reasonable accuracy, one is forced to use fairly
dense grid distributions over the region where the shock wave is
expected to be.

The pseudospectral method is an alternative to the finite
difference method. It has been applied successfully to many
smoothly varying flows. The numerical analysis of the method
has been given in detail by Gottlieb and Orszag in a monograph
[1]). Because of its high rate of convergence, the method
usually requires relatively few terms of the basis functions for
accurate computations. In addition to the spatial accuracy, the
dispersive error for unsteady computations is also minimized.

Recently, efforts have been made to apply the pseudo- .
spectral method to flows with shock waves. Gottlieb, Lustman, Ry
and Orszag [2] have demonstrated the feasibility of the pseudo- )
spectral method through the solution of a one-dimensional shock
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tube problem. By using the shock-capturing technique, they
showed that the shock wave can be resolved within one grid point.
The Gibbs phenomenon error due to the discontinuity can be fil-
tered to improve the accuracy. Gottlieb, Lustman, and Streett
[3] have attempted the two-dimensional problem of the reflection
of an oblique shock from a wall. The results from this investi-~
gation are encouraging. Using a fairly sparse grid, they showed
that the shock wave can be resolved within one grid point. The
accuracy of the solution as compared to the exact solution is
b reasonable considering the sparseness of the grid points,

In the present work, we shall consider steady transonic flows
around an airfoil by solving the Euler equations. We shall ad-
dress problems of applying the pseudospectral method to flows
around a complex geometry, including the development of a time-
L stepping scheme, and enhancement of the stability by residue

averaging. Numerical experimentation has been used to confirm
convergence with a small number of basis functions, and also the
capability to treat shock waves with the aid of filtering.

GOVERNING EQUATIONS AND BASIC APPROACH

The basic approach is to map the exterior of an airfoil to
the interior of a circle. Polar coordinates in the mapped plane
will be used. Spectral decomposition of the solution can be
used in the mapped plane. To serve this purpose, the Euler
equations in the mapped plane are written in fully conservative
form by using both physical and contravariant velocities. These
equations are

) *> 9 9 _
3T (q) + X (F) + 37 (&) = o (1)
where
W poU oV
P pul + y /YM puv -y P/YM A
-c.; = J| pu : P o= ¥ ; 8 = X : R
gv pvU - xYP/yM°° pvV + xxP/yM°° tﬂ_;
N pHU pHV IR
i J

] [-yx :;’] [3] r H=[y - 1)P + E]/o :

(x,y) are Cartesian coordinates in the physical plane, (X,Y) are S
polar coordinates in the mapped plane, p is the density, (u,v) .o
are velocity components, (U,V) are unscaled contravariant ’
velocity components, E is the energy, H is the specific
enthalpy, P is the pressure, J is the Jacobian of the trans-
formation, My is the free-stream Mach number, and y is the
specific heat ratio. P, p and the velocity vector (u,v) are
nondimensionalized by their values at the free-stream condition, . e
E and H are nondimensionalized by the free-stream internal energy
PeCyTw, and other variables at the free-stream condition are
computed from these variables.

The physical boundary conditions are defined by the solid-
wall condition on the airfoil surface and the fact that the
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disturbances generated by the airfoil propagate outward to
infinity. The numerical implementation of these physical
boundary conditions will be discussed later.
This initial effort employed a hybrid spectral-finite

® difference discretization to gain some experience with the
problem. In the circumferential direction, the variables are
expanded in a Fourier series because of the periodic nature of
the problem. In the radial direction, a central finite N
difference scheme is used. This hybrid scheme is designed to 1{3
answer some questions in applying the pseudospectral method to X

[ transonic flows. The application of the pseudospectral method °
to a realistic airfoil shape can be demonstrated by this scheme.
Since we expect that the shock wave will be normal to the air-
foil surface, the discontinuity is mainly in the X direction.
Adequate resolution of the shock wave can be achieved and the
question of convergence of the spectral series can be answered

e using the hybrid scheme. Other properties, such as the time- ®
stepping scheme, convergence acceleration, and the filtering
technique can also be studied with the hybrid scheme. We shall
use a Karman-Trefftz airfoil for this work because of its simple
analytical mapping from the physical plane to the interior of
the circle. The method can easily be extended to an airfoil of
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< arbitrary shape by using a truncated complex series to map the
profile to a circle. L
NUMERICAL SCHEME -
® A computational mesh is created by egually dividing the j‘fﬂ
(X,Y) coordinates in the mapped plane. In the mapped plane, 1
the spatial derivatives in X at each mesh point are evaluated :
by application of a fast Fourier transform. The derivatives in ﬁ
Y are evaluated by second-order central finite differences. -
Evaluation of the elements in the transformation matrices ;;;q
® (xx,Xy,¥Yx,Yy) is performed in the same manner. The singularity »
of the transformation at the trailing edge is avoided by placing e
it between two mesh points. RN
By using this method of evaluating spatial derivatives, the SRR

governing equations are converted to a system of ordinary dif- L
ferential equations in time. These equations can be solved ned
numerically by using any c¢f a variety of well-developed techni- [ )
ques for the solution of ordinary differential equations. An )
approximate fourth-order Runge-Kutta scheme is used in this Lo
work. The algorithm is given by the following equations: N

( -&(n) =20 4+ Sin %((n-1)

rn=1, ..., 4 (2)
where a represents the flow variables at the mesh points, R 0.
represents the terms with spatial derivatives in the equations, N
and n denotes the Runge-Kutta step. This scheme has been shown jﬁ
to be stable for a CFL number less than 2.8 [4] for a finite -

difference scheme, and is stable for our hybrid scheme with a » .
CFL number less than or equal to 2. Following Jameson, Schmidt, el
and Turkel [4], a local time step that is restricted by the CFL e

number is used. Because of this, no physical interpretation
should be given to the transient solutions.
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FILTERING

Filtering is required in suppressing the Gibbs error. A

) Schumann filter used by Gottlieb, Lustman, and Streett [3] and
given by the following formula has been applied every 35 time

steps at a CFL number of 3.5 (see later section on convergence
acceleration).

qQ = o.zs(qK+l + 2q, + qK_l): K=1i,j (3)

where i and j denote indices of the discrete points in the X
and Y directions, respectively. At the shock wave, one-sided
filtering in the X direction is applied to preserve the sharp-
ness of the shock wave. The Schumann filter is equivalent to a
first-order artificial viscosity. However, the filter is

) applied only every 35 time steps. The order of the error is
higher than first order. No high-mode smoothing [3] has been
applied.

BOUNDARY CONDITIONS

The numerical implementation of boundary conditions for a
hyperbolic system of partial differential equations is an
active research subject in itself. Essentially, on a boundary
Yo, there are four characteristics that correéspond to the
speeds gn, Qt, dn -_.C and gy + c. The respective characteristic
variables are p - C§0, Qt. P - PoColns and p + ppCoQn. Where
the subscript o stands for the quantities at the previous time
step. Only the characteristic variables carried on the outgoing
characteristics from the interior of the fluid domain can be
computed from the governing equations. The characteristic
variables carried on the incoming characteristics must be
replaced by the appropriate boundary conditions. The flow
quantities can then be recovered from the combination of the
boundary conditions and the outgoing characteristic variables.

On the solid surface Y = 0, there is only one incoming
characteristic. Let (M,N) be the momentum along the surface
and normal to the surface, respectively, and AQ be the symbol T e
for the temporal change of physical quantities Q as computed by @
the interior formula, with the subscript c denoting the R
quantities computed by the interior formula. The following e
formulae for the physical quantities at the boundary points can AN
then be given. "

AP = AE + y(y-1)M2 (' % M+ % E; A") (4) .l
P, = P, + AP (5) .
(%L =M_/o + (AM - 8p°M_/p )/o (6) oj
P =Py * bp (7) i

p(M) L 2 (AN'%) (8)
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=0, + -1 (2™ - p /2 (9)

™,
M = o 0oy (10)
nin) - o (11)
2
LI PUORSE [M(n)]/,(n) (12)

where the superscript n stands for the newly advanced quantities,
and all velocities are nondimensionalized by the free-stream
velocity.

At the far field boundary, the treatment is essentially the
same as that used by Jameson, Schmidt, and Turkel [4] except
that the "extrapolated" quantities as defined in that paper are
those computed by the interior computations.

CONVERGENCE ACCELERATION

To increase the stability of the time-stepping scheme, an
additional "residue-smoothing" process [5] has been implemented.
After the residue R has been evaluated at every mesh point, the
residues are smoothed by a linear transformation defined as
follows:

1 - €6 R (13)

R=(1-¢862)71 ¢ 2)-1

X Y
where §x and 8§y are conventional finite difference operators
in X and Y, and ¢ is the parameter for the residue-averaging
process. The new modified residue field R is used to advance
the solution in time. This process alters the time-dependent
solution without changing its steady state. To bring out the
essentials of the residue-averaging process, a simple wave
equation is considered:

A
Vet
IRy "

6, +co = (o] . (14)

The residue-averaging process as described is equivalent,
to the lowest order, to adding an additional term to the
original simple wave equation and converting it to the
following equation:

2
b, + co - c(Ax) beyx =0 - (15) °

A
' d

The dispersion relation for this equation can be given as SRR

w c
L= — (16)
1 + ekz(Ax)2

where v is the frequency and k is the wave number. By increasing
the parameter €, the wave speed for the high wave number com-
ponent is substantially increased. This decrease in wave speed
for the dangerous short waves contributes to the substantial
increase in the time step. 1In fact, Equation (15) is the
linearized form of a model equation for long dispersive waves

8 '’y
2'2"a%2'a

l"
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discussed by Benjamin, Bona, and Mahony [6], who pointed out
the numerical advantage of this equation over the Korteweg-de-
Vries equation. Other means of manipulating the dispersion
relation to gain stability have been suggested (e.g., [7]). -
However, these methods do not recover the original equation in o

steady state, although the error is of higher order. The ;:};;1
residue-averaging process substantially extends the stability SR
boundary. A CFL number of 3.5 has been used without any
difficulty.

COMPUTED RESULTS

For testing the solution algorithm, flows around a circular
cylinder are computed. The pressure distribution for a sub- .
L critical flow with My = 0.39 is given in Figure 1. The com- .

putation is performed on a 64x24 grid (64 points in the o
circumferential direction, 24 points radially). It has been
computed without filtering. A supercritical case with
Mo = 0.45 is also computed, and the results are shown in
Figure 2. Filtering is performed every 35 time steps with a
CFL number of 3.5. The results agree with a finite volume
calculation by Jameson, Schmidt, and Turkel, [4]. The shock
wave has no internal structure and is sharply defined.

A Karman-Trefftz airfoil with the following transformation
from the mapped plane I to the physical plane z is chosen for
calculations.

L3

.9

Fﬁiiﬁ
R |
ROt

}
|
1
1
|
i

(1+L2)° + (1-Lr)"
(1+12)* + (1-Lg)*

2 -
-Er= 1 Kk =1.9 (17)

e

L= (1 - n§)1/2 -f_ ;T

o (E,eng) = (-0.1,0) (18)

=

o

Supercritical non-lifting flows with Me = 0.75 are computed
on a 64x24 grid. The results are shown in Figure 3, together AT
with the results from a finite volume calculation. The hybrid IR
calculation shows again a sharply defined shock wave. The SR
agreement between the two calculations is very good. 1In
particular, the positions of the shock as defined by the S
midpoint of the structure show close agreement. There are o
discrepancies immediately behind the shock wave, however. The .
source of these discrepancies is not clear. The pressure ratio
across the shock wave using the pseudospectral calculation has
been checked against that using the Rankine-Hugoniot relation
based on the upstream Mach number. The error is less than R
4 percent. X

To demonstrate the convergence of the Fourier series, the
same case is computed on a 32x24 grid. The results are shown
in Figure 4, together with the results of calculations on a
denser mesh using a finite volume calculation. The accuracy of
the 32x24 calculation is quite good. The shock resolution of
the sparse mesh calculation is comparable to that of the 64x24
finite volume calculation. As expected, the finite volume
calculation on the sparse grid does not produce acceptable
results.
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CONCLUSIONS AND ACKNOWLEDGEMENTS

Several conclusions can be drawn from the present
investigation.

(1) In computing flows with shock waves, the Gibbs error can be
filtered to produce accurate results. Because of the rapid

convergence of the Fourier series, fewer grid points are

required than with the lower order difference-type scheme.

(2) A shock wave without internal structure can be produced.
This capability also contributes to the accuracy of the
method in that fewer grid points are required to resolve
the shock wave.

(3) Application of the pseudospectral method to flows around a

realistic geometry is possible using a mapping technique.
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1. Introduction t; ]
Work is in progress at Flow Industries on the direct numerical simulation --;-—4

of complex VTOL flows using the full three-dimensional, time~dependent .,_;f::
Navier-Stokes equations. The objective of this numerical simulation is to ;;}ji}q
compute accurately the details of the flow field and to achieve a better Rtre
understanding of the physics of the flow, including the role of initial -
turbulence in the jet, the influence of forward motion on hover aerodynamics, . 7
the collision zone and fountain characteristics, and the jet structure and Lo
entrainment process in the transitional flight regime. The results of this
work can be used to evaluate the merit of various models suggested in the past -
or can be used to construct a new model. This work will also allow the
assessment of wing-jet-ground interference effects and the accurate prediction 2-"f*5
of their associated forces and moments, which is required for the design and l{'f}1j
optimization of VTOL aircraft. This note describes the work completed at Flow . _;“4;
in the second year of a program in which VIOL aerodynamics are being
investigated numerically.

The problem under investigation is that of an infinite row of jets
impinging on the ground (see Figure 1). This problem, which contains the
essential features of twin jets impinging on the ground (see Figure 2),
simulates the hovering configuration. The choice of a row of jéts provides
the periodic property of the flow field, which allows approximation of the

flow properties in the periodic direction by a truncated Fourier series. The

spectral method may therefore be used in the periodic direction, while finite
difference approximations are used in the vertical z direction and the

y direction normal to the row of jets. The jets may be inclined in the

S

y direction, which leads to a configuration associated with an aircraft in
pitch while hovering. By imposing a cross flow in the y direction, it is
possible to study the effects of the aircraft's forward motion during takeoff

and transition.

Cr e

A computer code that solves the time-dependent Navier-Stokes equations has
been developed with the purpose of numerically simulating the problem of an
infinite row of jets impinging on the ground. The code presently uses finite
difference approximations in all three spatial directions, and it uses a

first-order time-differencing scheme. Modifications are in progress that will

allow the use of the spectral method in the periodic direction and the use of
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a second-order time~differencing scheme. Subgrid-scale modeling, which allows
the solution of problems at high Reynolds numbers, will also be introduced
into the code. Although the code is not in its final form, it has been used
to obtain solutions that indicate the main features of VTOL aerodynamics.

In this note, the governing equations and the boundary conditions used in
the code are summarized in Section 2. The method of solution is discussed in
Section 3, and preliminary examples of solutions using the code are presented

in Section 4.
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2. Governing Equations

) The governing equations are the Navier-Stokes equation

3+ (4P = Vo + 55 Vg ey

and the continuity equation
Veq =0 (2)

where q 18 the velocity vector and p is the pressure. When the Reynolds

number is too large to resolve numerically the entire range of energetic scales,

filtering will be used to eliminate the smaller (subgrid-scale) motioms.
Filtering Equation (1) introduces new terms, similar to Reynolds stress terms
obtained in the Reynolds—averaged equations, that contain the effect of the
subgrid-scale motions on the numerically resolved motions. We plan to use
standard procedures to handle these terms and will introduce them into our
numerical scheme at a later date. By taking the divergence of Equation (1),

the following Poisson equation governing the pressure is.obtained:

1

2 [}
iE-V (v g) . (3)

v2p = -V°[(gMq] - (Viq), +

Substituting Equation (2) into Equation (3) leads to the following pressure

equation:

Vp = Vel(g*Wg] . (4)

The system of Equations (1) and (4) is equivalent to the original system,
Equations (1) and (2), and is used here instead of the original set of

equations. The vector equation (1) is solved subject to the periodicity -

condition in the x direction; a weak outflow condition

du . 2w . R
#ith 9v/3y being determined from the continuity equation, is applied at

the side boundaries of the computational domain (y = Yg» ¥ yb), and a

no-slip condition is applied at the bottom boundary, z = zg, and the top

.
"
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boundary, z = Z.s outside the jet region. In the jet region, the inflow
’ condition

S(x,y,za) = £(x,y) (6)
is specified. Equation (4) is solved subject to the condition
P 2
=0 7)
5 (

at the side boundaries and subject to the Neumann boundary conditions

% determined from Equation (1) at the top and bottom boundaries.
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3. Method of Solution
! The finite difference approximations to Equations (1) and (4) are written

at the mesh points of a staggered grid. For advancing the solution from time
t" to time tn+l, vhere t° = nit, tn+1 = (n+1l) At and At is the time step, the

following first-order scheme is used:

) +1 1 2
qn = qn + At:[-(qn‘V)qn - Vpu + Re v f.l.n] (8)
+
where pn is determined so that mass conservation is assured at time t? 1.
) It 1s determined by solving the finite difference approximation to the equation
ViR = Vel(q™ "] . (9)

This equation is solved by using a direct (noniterative) fast Laplace equation

4 golver.

TN-216/09-84

- < > . e -

. NS T m st e et e et e L, e ORI AL SRR
R R I I S e P S R L L S AL AL AN o
AR VAR VIR I I R I I TR S T Ty W I




4. Numerical Examples

® The examples presented here are preliminary examples that have been solved
using the developed computer code. A relatively coarse numerical mesh is used,
and the Reynolds number is assumed to be low enough so that filtering is not
required. The results presented here are not intended to be an accurate
PY simulation of VTOL flow configurations. Nevertheless, they do indicate the
main features of these flows.
For all the examples presented here, the plane y = yj is assumed to be a

plane of symmetry. Unless otherwise stated, the computational domain is

e defined by (see Figure 1)
0= xj Sx < xe = 1
“2=ypLy<y,=2
0= zg LzLz, = 1

where all dimensions are normalized by the jet diameter. The jet velocity
profile in the direction of the jet axis is assumed to be given by
2
r_
R2
J

Qj(r) = 1 -

where Rj is the jet radius, r is the distance from the jet axis and velocities
are normalized by the jet maximum velocity. The Reynolds number in the

examples is based on the jet diameter and the maximum jet velocity.

Example 1:

In this example the jet axis is assumed to be normal to the ground plane
(a = 90°) and there is assumed to be no cross flow (V = 0). The Reynolds
number is given by Re = 300. An 18x72x18 (x,y,z) mesh is used.

Figures 3 through 12 show the main features of the flow generated by a row
of vertical jets impinging on the ground. The velocity vectors in the planes
x = xj, X = x; are shown in Figures 3 and 4, respectively. The fan-shaped
fountain that results from the collision of the two wall jets is apparent in
Figure 4. The jet, the wall jet and the fountain are apparent in Figure 5.
In both Figures 5 and 6 a downward motion exists as the plane x = X is
approached, while an upward motion exists as the plane x = X¢ is approached.

However, the relative magnitudes of these motions are reversed in the two
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figures. Figure 5 indicates that the downward motion in the jet is greater
® than the upward motion in the fountain. The plane of Figure 6 does not pass
through the jet. There, the fountain upward motion is relatively stronger
than the downward motion at x = xj. Figures 7 through 10 are pressure
contours that indicate high-pressure areas in the zones of jet-ground

impingement, wall jet-wall jet collision and fountain impingement on the upper

boundary. Figures 11 and 12 are contour plots for the vorticity components.

Example 2: EZj'?
In this example the jet axis is assumed to be inclined at an angle
a = 60° to the ground. A cross flow of V = 0.2 is also assumed. The :
Reynolds number is given by Re = 300, An 18x72x18 (x,y,z) mesh is used. 'T_?‘;
Figures 13 through 22 show the main features of the flow generated by a RN
row of inclined jets impinging on the ground in a cross flow. In Figure 13
the ground vortex formed by the interaction of the cross flow and the wall jet

is apparent. The effect of the cross flow on the fan-shaped fountain is shown

in Figure 14, where it is no longer symmetric.

For the problem of a jet in a cross flow, two basic configurations are
relevant to VIOL aerodynamics. In the first configuration, the jet impinges
on the ground. The main features of this flow are indicated in Example 2. A

second configuration results as the distance between the aircraft and the

ground becomes large and/or as the forward aircraft speed becomes large. 1In
this case, the jet does not impinge on the ground. This configuration is used R

in the following example.

Example 3: .
In this example a = 90°, V= 0.7 and Re = 60. A 7x28x14 mesh is used. e

The computational domain is defined by :ij;:

0=x, <x<x_=1

¢ =" ="
-ZSyBiyiybsz
0=z <z<z =2

g—"=—"a

Figures 23 through 32 show the main features of this flow. Figure 23

indicates that the jet changes its direction before it reaches the ground. As
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indicated in Figure 24, no fountain flow develops in this example since there
* are no wall jets. The double vortex generated by the jet-cross flow interac- e
tion is shown in Figure 26. As indicated by the pressure contours shown in

Figure 27, a high-pressure region develops upstream of the jet, while a

low-pressure region develops downstream of the jet in its wake. _?;:ﬁ;
b .
Example 4: '
This example is the same as Example 3 with the exception that V = 0.

Figures 33 through 42, which show the main features of the flow for this case,

P thus allow comparison between the zero cross-flow case (given here) and a - °
cross-flow case (Example 3) for the same configuration. S
Example 5:

b This example is similar to Example 1 (a = 90°, V = 0). However, a I

relatively fine computational mesh is used here, which allows the use of a
relatively large Reynolds number (Re = 600). Symmetry is assumed in the x
direction in addition to the y direction. Therefore, the computational domain
b is defined by

=x, <x<x_=1
j~=-"-="f

=yj.<.}'_<_yb=2

= zg Lz < z, =1

A 24x48x24 computational mesh is used.

The results of this calculation are indicated in Figures 43 through 52.
Qualitatively similar effects to those observed in the first example are
L, indicated. However, certain effects, such as the propagation of the initial
vortex, while observed for the high-Reynolds~number, fine-mesh calculation
(see Figure 53) are not observed for the low-Reynolds-number, coarse-mesh

calculation (see Figure 54).
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Figure 16. Example 2: Velocity Vectors in the Plane y = Yd I;:-_T;':-_;j
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Figure 17. Example 2: Pressure Contours in the Plane x = Xj f;ii_
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Figure 18. Example 2: Pressure Contours in the Planey = Yj
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Figure 19. Example 2: Pressure Contours in the Plane z = 2g

Figure 20. Example 2: Pressure Contours in the Plane z = z,
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x-Vorticity Component in the Plane x = Xj

Example 2

Figure 21.
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Example 2

Figure 22,
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Figure 23. Example 3: Velocity Vectors in the Plane x = Xj
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Figure 26. Example 3: Velocity Vectors in the Planey = Yj
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Figure 26. Example 3: Velocity Vectors in the Plane y = yq4 333
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Figure 34. Example 4:

Velocity Vectors in the Plane x = x4
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Figure 33. Example 4: Velocity Vectors in the Plane x = Xj
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Figure 36. Example 4: Velocity Vectors in the Plane y = y4
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Figure 37. Example 4: Pressure Contours in the Plane x = Xj
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Figure 39. Example 4: Pressure contours in the Plane z = zg
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Figure 42. Example 4: y-Vorticity Componentin the Planey = Yj
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Figure 43. Example 5: Velocity Vectors in the Plane x = X
®
Y
za " 4 0 4 ° 9 P PF e P 9 = & s a0 s o0 s S e P ® ® ¢ 9 ® P 0P ¢ 0 P PP PP O VO 9V O P S
LS L L 000022 02 2 P 0 P P P It P I L LRI LS O dd o d o @ ot B PP PR Bt e =
(200 I 2 I A B N Y A A A A I I A Y A 4 B B AP W A AV P N B0 B R R R O
13802 00000022287 07 P A A PPPPI I s s s s s P P rrrrrrraca AT
® 1130022008202 P P 2T /77772000 00080006srsompmrrroandg e~
1'P’rt?”"’”’”’/’/”’/”’/”fﬂ’/l’l’ldﬁd*dﬂ*- .”W
3100002022202 7272722272722 000000cannnmmwnds S
SYLVR 00002000 L R T77PPP P 2720 At Arrrnrmns o
11F}I!ffrrfr///r///f/f/rz;;;;/»/;;,aaua,p- T
Y0212 B2 P PR IR PP PPPPI PP 7P AP 000 rirrrnnnnne s SRS
fff;;ffffffff//f//f////////l/////,;f)/aaaap ﬁ{q
C YEL2220 2020027207272 777720224000 00 mirnmnnns S
L IR L200 0002000207772 0 70000 s pprpprirmmmncnn >
S L0 L L2227 0272777 PRI AR r A AR ddttrrrm it mmen s e
VEPPPP 211707 2P 70 7 R R R Al AR R AR Rttt ottt e 2 — =
f"r””r”,’////,,,l/,//,,,,”’I’Iﬁllddnﬂaaaa‘
VY V0020222777727 77 7777 P AR s ot R AR A RR D NDan ot ot o s e -w
¢ VSO0 0297 PRI Y Pl PP LI RANN R AR DA AR Pt DAl oW e P B DB R B RPN D & = . <
8 80GOS R P o) g ey oy gy ey Yy Sy S ey P Sy P P oy wy ) ) Doy gy o
D I I T R G S . X ¥ 1 Y Y N N Y
RN EEEEREEEEE L L L E R R R R R N R I I N N S
lg ¢ & o &2 9 9 ® &> eo = e S e e ® ®© ® & ® ® ®» ® & ® & 0 ¢ 8 s 8 o ¢ 4 e & v e s e “'-.:‘
C »
Y Yd Yo R
Figure 44. Example 6: Velocity Vectors in the Plane x = x; i
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Figure 46. Example 6: Velocity Vectors in the Plane y = Yj
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Figure 46. Example 6: Velocity Vectors in the Plane y = yq :
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Figure 47. Example 5: Pressure Contours in the Plane x = Xj

PN A NI A NN N N AN




f PIAPa A Aran AP Bt St i A AT A A St I T BN S e S e a e San s e Same N A Aere Bone e St e cSgh-amso SN e e e e e e e T
- - RS . R S - . PR B .. . .. MR PR S At A Sl Pl

-47-

r.

v

T IR
e
e e e [
I

Figure 48. Example 5: Pressure Contours in the Planey = y; x
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Figure 49.
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Figure 50. Example 5: Pressure Contours in the Plane z = z,
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Figure 51. Example 5: x-Vorticity Componentin the Plane x = Xj
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y-Vorticity Component in the Plane y = Yj
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Figure 63. Initial Vortex Propagation in Example 6 “
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Initial Vortex Propagation in Example 1

Figure 54.
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